Here we explore the relative contribution of the Madden-Julian Oscillation (MJO) and El Niño Southern Oscillation (ENSO) to midlatitude subseasonal predictive skill of upper atmospheric circulation over the North Pacific, using an inherently interpretable neural network applied to pre-industrial control runs of the Community Earth System Model version 2. We find that this interpretable network generally favors the state of ENSO, rather than the MJO, to make correct predictions on a range of subseasonal lead times and predictand averaging windows. Moreover, the predictability of positive circulation anomalies over the North Pacific is comparatively lower than that of their negative counterparts, especially evident when the ENSO state is important. However, when ENSO is in a neutral state, our findings indicate that the MJO provides some predictive information, particularly for positive anomalies. We identify three distinct evolutions of these MJO states, offering fresh insights into opportune forecasting windows for MJO teleconnections.
Individual Files - View, select, and download individual files from this Dataset.
Zip File - Download a ZIP file containing all files.
Python script - Download all files via Python 3, preferred for all operating systems.
Wget shell script - Download all files using Wget, preferred for Linux.
Curl shell script - Download all files via Curl, preferred for MacOS.