netcdf file:///data/07f089eb-fcd8-4fd0-9a0d-38b45cedd9dc/Csw_Acetone_f09f09_Monthly_WangJGR2020_v20190916a.nc-505673d2-39fc-4997-b70a-28fff991ed73 {
dimensions:
time = UNLIMITED; // (12 currently)
lat = 192;
lon = 288;
variables:
int time(time=12);
:_FillValue = -2147483647; // int
:long_name = "date";
:units = "YYYYMMDD";
double lat(lat=192);
:units = "degrees_north";
:long_name = "latitude";
:_FillValue = -900.0; // double
double lon(lon=288);
:units = "degrees_east";
:long_name = "longitude";
:_FillValue = -900.0; // double
float acetone_conc_nM_Monthly(time=12, lat=192, lon=288);
:_FillValue = -99999.0f; // float
:missing_value = 9.96921E36f; // float
:units = "nanomoles per liter (nM)";
// global attributes:
:createdby = "Siyuan Wang (NCAR), siyuan@ucar.edu";
:title = "Surface seawater concentration of acetone predicted by an observationally trained machine learning algorithm (random forest).";
:note = "Training dataset: Yang et al 2014a; Yang et al 2014b; Dixon et al 2014; Beale et al 2013; Kameyama et al 2010; Hudson et al 2007; Marandino et al 2005; Marandino et al (Knorr06)";
:ref = "Wang et al. JGR 2020. Global Atmospheric Budget of Acetone: Air-Sea Exchange and the Contribution to Hydroxyl Radicals";
:creation_date = "Mon Jun 29 16:35:00 MDT 2020";
}