CACTI Convection Modeling Use Case

Compiled May 2022 by Model Data RCN team

Summary

Weighted rubric score - 51

Category - Preserve selected simulation workflow outputs

- Use Case Description
 - COMMENTARY NOTE BY RCN TEAM: This use case was based on a proposed simulation project that has not yet been completed.
 - \circ $\;$ High-level overview of the use case
 - Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign, focuses on the Argentina area, funded by DoE.
 - ARM provides high resolution large-eddy simulations (LES) during the field program. Goal is to use CACTI data to study convection initiation, model errors, physics errors.
 - Initialization will be provided by DoE ARM, observations hosted by CACTI campaign.
 - Science goals and basic workflow
 - The planned approach is that they won't need to save the run output, just the documentation, configuration, diagnostics, and some 2D fields. They don't have to save full 3D fields.
 - Goal: perform large-eddy simulations for selected events of significance using a different microphysics parameterization as well outputting additional process-based diagnostics.
 - WRF output/diagnostic files in netCDF. Simulations will be done at a 500-m and 100-m horizontal grid spacing with domain sizes of approx 750 x 860 grid cells and 2100 x 2700 grid cells, respectively.
 - Workflow: Grab ARM simulations, rerun these simulations, by changing the physics options. Test a different physics suite, compare how the LES simulations look. Second goal, investigate the tendency diagnostics, how they relate to dynamics.
- What use-case specific additional materials should be preserved and shared?
 - Data
 - Inputs to model
 - ARM LES provided by DoE -initialization data.
 - Accessible through LASSO database
 - https://www.arm.gov/capabilities/modeling/lasso/
 - 2 Pb total
 - Raw model output
 - Potentially to produce 180 Tb
 - Model produces 3D variables.
 - Tendency outputs

- Full vertical model resolution
- Processed model output
 - Purpose is to compare the simulations with the CACTI observational database. CACTI observations are managed by DoE, and will be used as comparison with model output.
 - 6 TB model output is the planned post-processed files to archive
 - Vertical resolution interpolated to pressure levels There will be extensive thinning of vertical levels
 - Standard levels
 - Cloud microphysical property parameters 2D variables of importance will be archived
 - Cloud top temperature, Radar reflectivity, CAPE, etc...
 - Environmental conditions, moisture at various levels
 - 2D geospatial information is very important to help diagnose model errors.
- Software plan to share via a GitHub repo and point to relevant public code pieces.
 - Model configuration
 - Namelists plan is to use the same configuration as LASSO, as close as possible. Will provide details about the configuration in publications or other documentation.
 - Preprocessing code
 - Will be preprocessing LES data to pre-coarse it for coarse grain simulations.
 - No set plan for if/how to share this code yet
 - Model code
 - WRF is pubic model
 - The project will be modifying Tendency components of the model
 - Could put code and information about this on Github
 - Postprocessing code
 - Lots of WRF post-processing code available from the community, in <u>WRF MET</u>.
- Other
 - Documentation
 - Haven't thought about this much. But they plan to be sharing tendency diagnostics on Github, and documenting the versions of WRF used for the project.
 - Visualizations or images
 - None, beyond typical article graphics.
- Why should these things be preserved and shared?
 - General
 - To show the validity of the results.

- Requirements of publications
- Helpful for the community that uses LASSO. Stimulate ideas of other comparisons for physics schemes in LASSO.
- Reasons why the things listed above are important
 - Note expected/intended audience and what they expect/need
 - Are there specific people who will be using the data downstream?
 Not initially.
 - Possible/aspirational users?
 - If funded, the project team will inform the LASSO community about these products.
 - Note any temporal considerations, such as particular products that become more/less useful over time
 - Will still be useful over time as comparison with CACTI observations. Not everybody can run simulations of this size. Should not reduce in value, unless errors are found later.
 - Other perspective is that this is comparing with a specific configuration of LASSO, so as LASSO changes, this data may be less relevant
- Broader Impacts:
 - How will output from this project be used by stakeholders?
 - Main collaborators are DoE labs and NCAR researchers.
 - NCAR has South America affinity group, which is a potential avenue for sharing results.
 - How were stakeholders involved in the data curation decision-making?
 - Not discussed
 - How will stakeholders be compensated for their participation in the data curation decision-making process?
 - Not discussed
- Do you have any concerns about misuse of your data or software? If so, what concerns do you have, and what are the reasons for those concerns?
 - None. This project is focused on cloud process, convection initiation, which are not a concern to be shared.